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Abstract: Atmospheric rivers (ARs) are narrow bands of enhanced integrated water vapor trans-
port, modulated by large-scale and synoptic-scale variability. Here, we investigate how ARs and
snowpack are shaped by large-scale variability such as arctic oscillation (AO) by examining the
synoptic conditions and characteristics of ARs and snowpack in the different phases of AO. Using
Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) data, Modern-
Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data, and
in-situ observation data over the eastern Pacific and western United States. we found that more
precipitation is observed in lower latitudes (35◦ N–45◦ N) during negative AO months and farther
north (north of 45◦ N) in latitude during positive AO months. These are associated with wavelike
synoptic patterns in negative AO months and more straight-line type synoptic patterns in positive
AO months. The different phases of AO also modulate the AR characteristics: 2.6% less intense
(5.3% more intense) integrated water vapor transport and total precipitation, and 16.0% shorter
(21.1% longer) duration of ARs than the climatological mean (1980–2019) for positive AO (negative
AO) phase. AR frequency is also higher (~50.4%) than the climatological mean for negative AO phase,
but there is no statistically significant difference between either negative AO or positive AO phase,
especially in southern California. In addition, the snow water equivalent (SWE) tends to be reduced
in the positive AO phase and under high-temperature conditions, especially in recent years (2010s).
The similar relationships are found in the early 1990s and 2000s, but their statistical significances are
low. Considering that lower atmospheric temperature keeps increasing over the eastern Pacific and
the western U.S., and SWE tends to be reduced in the positive AO phase in recent years, SWE may
decrease over northern California if the warming condition persists. These findings highlight how
the characteristics of local extreme weather can be shaped by large-scale climate variability.

Keywords: atmospheric rivers; arctic oscillation; integrated water vapor transport; snow water
equivalent; climate variability

1. Introduction

Atmospheric rivers (ARs) are narrow bands of enhanced integrated water vapor
transport (IVT), which typically transfer moisture from the tropics and subtropics into the
higher midlatitudes [1]. While there are many regional and global AR detection methods [2–6],
ARs generally are characterized by the filamentary shape of strong water vapor transport
associated with extratropical cyclones and proceeded by a low-level jet stream, categorized
by their IVT (typically greater than ~250 kg m−1 s−1) and high integrated water vapor
(IWV; >2 cm) [7]. The advent of the Special Sensor Microwave Imager (SSM/I), which has
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provided extensive integrated water vapor measurements across the globe, has made the
characteristics of ARs clearer, especially over the ocean [7]. Furthermore, although ARs
only cover about ten percent of the globe longitudinally, they transport up to ninety percent
of poleward water vapor [1,8,9].

While ARs occur globally, ARs are particularly important to California’s water re-
sources, contributing up to fifty percent of the state’s annual precipitation and stream-
flow [10]. Studies have demonstrated the importance of ARs and snowpack in the Sierra
Nevada mountains regarding water resources, drought, and flooding [10–12]. An increased
number of ARs can also influence the snowpack. For example, rain-on-snow (ROS) events
during ARs, i.e., when precipitation as rain falls onto existing snowpack during ARs,
increase flood risks and boost snowmelt [13]. ROS and AR events occurring in different
locations can have opposing effects on snowpack, as shown by Goldenson et al. [14], where
there was an increase in snowpack in the Sierra Nevada Mountains and a decrease in
snowpack in the Cascade Mountain Range. Hence, understanding the AR characteristics
and their regional dependency is also critical to accurately estimating the snowpack and
monitoring it in the western United States.

The actual contribution of ARs to the rain and snowpack in California depends on
where they make landfall, which is often associated with the geographic difference [2,11,15].
Geographical differences of ARs are based on the terrain of the area. Since water vapor
transported in ARs is lower than in the atmosphere (under ~700 hPa), it is especially subject
to orographic lifting, which is when moist air flows from lower terrain to higher terrain
causing the air to cool and form clouds, producing precipitation [11]. From this, it can be
concluded that the location of the AR landfall is closely associated with the type of terrain,
which in turn influences how much water vapor falls as precipitation and how far inland
the AR’s influence reaches [15]. Because of this, it has been observed that the number of
ARs that reach farther into the interior is highest in the Pacific Northwest, especially over
lower elevation areas, while fewer ARs make it over the High Sierra Nevada mountains
and into the Great Basin [2]. These features are largely modulated by different atmospheric
circulation and conditions from daily to decadal time scales.

Although ARs are largely governed by the regional moisture flux and meteorological
conditions, they are also controlled by large-scale climate variability [16,17] with different
temporal scales. The climate variability, such as El Niño-Southern Oscillation (ENSO),
Arctic Oscillation (AO), Madden-Julian Oscillation (MJO), and Pacific/North American
Teleconnection Pattern (PNA), modulates different meteorological conditions that fre-
quently fluctuate, demonstrating their possible linkages to ARs. ENSO strengthens or
weakens surface winds [18] over the ocean, which typically enhances the regional differ-
ence in precipitation. AO and PNA are associated with changes in atmospheric pressure
over the land and the ocean in the Northern Hemisphere (NH). Ryoo et al. [19] showed
that U.S. west coast precipitation is highly modulated by the ENSO through the Rossby
wave breakings associated with the change in the location and intensity of the subtropical
upper-level jet and moisture transport pathways.

Recent studies, however, presented contrasting results. For instance, no significant
correlations were found between Sea surface temperature (SST) based El Niño Southern Os-
cillation and ARs in the Pacific Northwest [17,19] although more frequent AR was observed
in positive Southern Oscillation Index (SOI) [17]. In contrast, a significant relationship
was found between ENSO and AR activities over the east Asian and northwestern Pa-
cific [20]. Guan et al. [16] also reported that the high frequency of ARs over California is
favored by the negative phase of the Arctic Oscillation (AO) and Pacific-North American
(PNA) teleconnection patterns. While the negative AO tends to bring more precipitation
in California [16] and cause more extreme precipitation when combined with the positive
SOI [17], positive AO was also shown to increase wintertime precipitation in high latitude
regions [21]. More recently, using a self-organizing map, Kim and Chiang [22] separated
the various climate modes into two groups based on their synoptic variabilities, such as
the ENSO mode and jet mode (including the AO index), and showed that these synoptic
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patterns are closely associated with the distinct AR characteristics such as genesis, landfall
location, and duration. However, this study also relied on the reanalysis product and
surface observation, and the use of satellite or in-situ data over a long period of record has
not been presented.

The primary goal of this paper is to understand further how the AR characteristics,
local precipitation, and snowpack vary with large-scale climate variability. The specific
science objectives to determine are (1) the synoptic conditions shaped by the different
phases of AO, (2) how the different phases of the large-scale AO patterns impact the
characteristics of ARs in terms of intensity, duration, and frequency, and (3) how they are
related to local precipitation, snowpack, and other climate factors such as temperature and
stability over the different regions in the western U.S. To address these objectives, we use
long records of the 3-hourly (1980–2019) and monthly (1980–2020) MERRA2 reanalysis data
combined with the monthly IMERG satellite data (2001–2019) to extensively investigate
how the different phases of AO are associated with regional precipitation patterns and
how they are coupled to the synoptic conditions that favor ARs over the western U.S. The
example of AR captured in IMERG precipitation data is shown along with the region of
focus in this study in Figure 2.

We describe the data and methods in Section 2. The dominant synoptic patterns during
the different phases of AO and associated AR characteristics and snowpack are examined
in Section 3. In Section 4, the discussion and conclusions of this study are provided.
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Figure 1. (a) The example of GPM precipitation for the 8 January 2017 AR event, striking the western 
U.S (figure credit: NASA GPM [23]). (b) The elevation map of the western U.S. and snowpack site 
(Peterson Flat (41.3° N, 122.5° W), Rubicon Peak (39.0° N, 120.1° W, Carson Pass (38.7° N, 120.0° W), 
and Charlotte Lake (36.8° N, 118.4° W)) in the western U.S. The blue box refers to the AR character-
istic study (A–F) region and snowpack observation sites (yellow dot and arrows). 

2. Data and Methods 
2.1. Data 

We utilized a long-term multiplatform dataset including reanalysis, satellite, and lo-
cal observation. Our study regions cover the eastern Pacific and western U.S; for regional 
AR and SWE analysis, we focus on the local sites, but for synoptic scale analysis, we in-
clude the eastern Pacific and the western U.S. (160–100° W, 30–50° N). The study period 
spans the whole months of the year, but we focused on October through April for synoptic 
structure and AR characteristic analysis because precipitation and moisture transport as-
sociated with dynamic processes over the western U.S. is most active during that period. 
The individual dataset we used in this study are described in the following subsections. 

2.1.1. MERRA2 
Meteorological variables analyzed in this study were collected from NASA’s Mod-
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Figure 2. (a) The example of GPM precipitation for the 8 January 2017 AR event, striking the western
U.S (figure credit: NASA GPM [23]). (b) The elevation map of the western U.S. and snowpack site
(Peterson Flat (41.3◦ N, 122.5◦ W), Rubicon Peak (39.0◦ N, 120.1◦ W, Carson Pass (38.7◦ N, 120.0◦ W),
and Charlotte Lake (36.8◦ N, 118.4◦ W)) in the western U.S. The blue box refers to the AR characteristic
study (A–F) region and snowpack observation sites (yellow dot and arrows).

2. Data and Methods
2.1. Data

We utilized a long-term multiplatform dataset including reanalysis, satellite, and local
observation. Our study regions cover the eastern Pacific and western U.S; for regional AR
and SWE analysis, we focus on the local sites, but for synoptic scale analysis, we include
the eastern Pacific and the western U.S. (160–100◦ W, 30–50◦ N). The study period spans the
whole months of the year, but we focused on October through April for synoptic structure
and AR characteristic analysis because precipitation and moisture transport associated with
dynamic processes over the western U.S. is most active during that period. The individual
dataset we used in this study are described in the following subsections.

2.1.1. MERRA2

Meteorological variables analyzed in this study were collected from NASA’s Modern-
Era Retrospective analysis for Research and Applications version 2 (MERRA2) [24,25],
including sea level pressure (SLP), geopotential height at 1000 hPa and 500 hPa, air tem-
perature at 850 hPa, horizontal wind (u, v) at 850, 500, and 250 hPa, potential temperature
at 700 hPa and 1000 hPa, and vertically integrated water vapor flux. Both instantaneous
3-dimensional and time-averaged 2-dimensional 3-hourly [26] and monthly mean [27,28]
data collections were implemented with a spatial resolution of 0.5◦ × 0.625◦. Produced
by the Global Modeling and Assimilation Office (GMAO) of NASA, MERRA2 uses the
Goddard Earth Observing System Model (GEOS) version 5.12.4 and covers the period from
1980 onward.

A recent AR study showed that enhanced integrated water vapor transport in MERRA-
2 leads to increased AR detection with fixed thresholds relative to JRA-55 and ERA5 [29]. A
comparison study of the reanalyses with dropsonde data showed that IVT error is lowest in
ERA-5 [30]. However, their overall patterns of IVT are comparable, although the absolute
value of IVT differs among reanalyses [29], potentially indicating the uncertainty of the
use of MERRA2 data on AR characteristics associated with the different phases of AO is
expected to be small.

For AR characteristic analysis, the integrated water vapor transport (IVT), calculated
in kilograms per meter per second, was used. This is key in determining atmospheric rivers’
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strength and precipitation outcome [31]. The IVT data were initially measured from the
MERRA2 reanalysis product and then collated into an AR catalog [2]. IVT was calculated
using the following formula:

IVT =
1
g

∫ 100 hPa

Ps f c

qV dp (1)

where psfc is the pressure at the surface, q is the specific humidity, V is the total horizontal
wind vector, and g is the gravitational acceleration [2]. We collected IVT data from five
sites spanning the six different subregions, each represented by a northern point, a central
point, and a southern point, to obtain a large-scale average to best facilitate the AO impact
on the regional scale ARs. The data were originally available at a 3-hourly resolution
and later averaged into monthly data for time series analysis for ARs. Additional data
from this database were AR duration and the total number of AR occurrences (referred to
AR frequency).

2.1.2. Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG)

Global precipitation data were acquired from NASA’s Integrated Multi-satellite Re-
trievals for GPM (IMERG) with daily and monthly resolution as a level 3 final run prod-
uct [32]. IMERG data fuse the TRMM era (2000–2015) precipitation estimates with GPM era
(2014–present) precipitation estimates by combining all satellite microwave precipitation
estimates with microwave-calibrated infrared (IR) satellite estimates. IMERG data were
collected from the first full year after inception in 2001 through 2019 and had a monthly
timescale resolution and a 0.1◦ by 0.1◦ spatial resolution up to ~60◦ S and 60◦ N. The
monthly anomalies were calculated by subtracting the seasonal mean from the data.

It has been reported that the IMERG products tend to underestimate the orographic
precipitation compared to the rain gauge data and can be sensitive to the number of
available gauges used for the calibration process of IMERG [33,34]. While there is a good
agreement between IMERG and CLoudSat for precipitation in extratropical cyclones [35],
the IMERG product has uncertainty in terms of the precipitation rates; it is reported to show
greater precipitation rates than CloudSat [35] in moist environments and lower precipitation
rates in dry and moderately moist environments [36] and vigorously ascending regions
associated with the extratropical cyclones [37].

Despite this limitation, the IMERG product has been tested and proven to be (i) gener-
ally good at a regional scale [38], (ii) more accurate than the GPM core mission precipitation
product [39], and (iii) known to be better suited to track cyclones than the daily Global
Precipitation Climatology Project dataset [40]. Thus, with these uncertainties in mind, the
IMERG final products formed an adequate dataset for understanding the precipitation
features and characteristics associated with an AR, which is a part of extratropical cyclones
and is affected by the synoptic- and large-scale variability on a global and regional scale in
the western U.S.

2.1.3. Arctic Oscillation (AO), Snow Water Equivalent (SWE), Rain-On-Snow (ROS), and
Local Land Precipitation

The Arctic Oscillation (AO) index is a measurement of 1000 hPa geopotential height
anomalies north of 20◦ N [41]. These data were collected from the National Weather
Service’s Climate Prediction Center [41]. The index is measured daily and was collected as
a monthly average when examining 40 years. To filter out such large fluctuating patterns,
we calculated the three-month running average for time series analysis (Figure 3).
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Data used to analyze snow accumulation and corresponding total precipitation were
gathered from the California Data Exchange Center provided by the California Department
of Water Resources from 1985 to 2020 [42]. The data were originally available in hourly
resolution but later averaged into monthly data to associate them with AO index and other
meteorological variables. Since this database mainly covers the state of California, the
time and spatial aspects of our data were limited by this. In addition, since the quality
of the reanalysis data in the mountain or near-surface regions is poor or unavailable [43],
surrounding air temperature measurements were used in this SWE analysis and were
collected from the same local sites. We also used these measurements to determine ROS
events, which are defined when the SWE decreased while the total precipitation increased.

2.2. Methodology
Percentage Difference, Anomaly Calculation, and Correlation Analysis

The behavior of ARs can vary greatly based on locations [15,44]. Thus, to better
understand how positive and negative AO months differ from the climatological mean
(1980–2019) in different sectors of the western U.S., we calculated the percentage difference
for each analyzed month, especially for AR characteristic analysis. The percentage differ-
ence is computed by subtracting the average of all months from the average of positive or
negative AO months and dividing by the average of all months. For those analyses, we
calculated the average for AO months greater than +1.5 (less than −1.5) for the positive
(negative) AO phases, respectively. The formula used to calculate these differences was as
follows:

A% =
(ma − ca)× 100

ca
(2)
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where ma is the average of the analyzed month and ca is the climatological mean of that
month.

We also calculated the anomaly of the variables to discern how different the given
month or periods are compared to the climatological mean. Each anomaly field was
computed by subtracting the climatological monthly mean value from each monthly mean
value. The correlation analysis was performed to determine the correlation among variables.
The student’s t-test was used to determine if there was a significant difference between the
two groups mean and to obtain the statistical significance.

3. Results

Figure 3 shows the example of precipitation of January 2009 and 2010 corresponding
to a negative and positive AO index, along with the time series of the IMERG precipitation
anomaly from the climatological mean (2001–2019) overlaid by the AO monthly index.
Although there is large month-to-month precipitation variability, we see some noteworthy
areas indicating a possible linkage between precipitation and AO.

For example, high precipitation is observed over the northeastern Pacific and north
of the western U.S. in positive AO months (e.g., January 2009), while a high precipitation
rate is found in the lower latitudes such as Washington, Oregon, and northern California in
negative AO months (e.g., January 2010), when AO is in the opposite phase. Interestingly,
the AO index tends to have a negative phase for the higher precipitation events during 2003,
2006, 2010, and 2016. In contrast, the AO index tends to be highly positive or marginally
positive for the lower precipitation events during 2007, 2012, 2014, and 2015. This suggests
that large-scale climate variability such as AO can modulate local precipitation. The detailed
characteristics will be discussed in the following sections.

3.1. Synoptic Characteristics of ARs in Different Phases of AO
3.1.1. Examples of SLP and Wind Features in Different Phases of AO

Since synoptic conditions can be affected by the different phases of AO, we first
examined synoptic conditions associated with different phases of AO. Dates of the AO
phase from all months greater than +1.5 (less than −1.5) from 1980 to 2019 were gathered
(not shown) and were referred as top positive AO (negative AO) months. From this, we
classified the top positive AO and top negative AO months and then compared the top
positive and negative AO months to the whole 40-year span. Figure 4a,c show the distinct
SLP patterns in the different phases of AO from the top positive and negative AO months.
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Although there is substantial month-to-month variability, the positive phase tends
to have high-pressure systems centered in the northeastern Pacific off the coast of Alaska
with lower-than-average SLP over the Arctic. Negative AO months tend to show the
opposite pattern with low-pressure systems centered in the eastern Pacific Ocean and
higher-than-average pressure in the Arctic region; these patterns are consistent with the pre-
vious understanding of AO-pressure-temperature coupling in the Arctic and mid-latitude
regions [45,46]. These patterns may prevent cold Arctic flow from moving southward in
the positive AO months compared to negative AO months. Similar features associated with
a different phase of AO are found in other months and years (not shown).

3.1.2. Composites of SLP, Wind Speed, and Vertically Integrated Water Vapor Flux

To corroborate the different characteristics of synoptic conditions during the different
phases of AO, composite analysis was performed on SLP, wind, and vertically integrated
zonal water vapor flux for all positive AO months and all negative AO months, shown in
Figure 5. The composite of major negative AO months (Figure 4c) confirms the SLP pattern
seen in the top negative AO months, i.e., lower SLP off the coast of Alaska and high SLP in
the Arctic.
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Figure 5. Composite (a,b) SLP, (c,d) 500 hPa zonal wind speed, and (e,f) vertically integrated zonal
water vapor flux of all top positive (>+1.5) and top negative (<−1.5) AO months from October
through April during 1980–2019.

The two notable things in the negative AO months plot are a lower low-pressure
system in the Northeast Pacific and a much higher high-pressure system in the Arctic
as compared to the positive AO months. This confirms the pattern shown in the SLP
differences during AO phases [45]. It also indicates there can be more meridional flow
developing associated with the low-pressure system during the negative phase. Addition-
ally, in the positive months, more ridge-like patterns develop, which can form a warm,
high-pressure system over the western U.S., while more trough-like patterns develop in the
negative AO months, which can facilitate northward tropical moisture, potentially fueling
ARs over the western U.S. (see Figure 4b,d).

The horizontal zonal wind speeds for the positive and negative AO months are shown
in Figure 5c,d. These wind maps show that in the negative AO phase, there are strong
areas of westerly and easterly winds in the 35◦ N and 60◦ N regions, respectively, at all
three levels (not shown) that are closer to the North American coast than in the positive AO
months. Here, we see opposing patterns in the positive and negative phases of AO, where
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there is an area band to the west of the California coast that has lower wind speeds during
the positive phase and higher wind speeds during the negative phase (Figure 5c,d). We also
found that the low-level jet, often defined as a maximum wind speed (around 12 m s−1 or
greater) in the lower troposphere [47], plays a critical role in transporting moisture during
ARs and occurs more favorably during negative AO phases (not shown). This indicates
conditions in negative AO phases may provide favorable conditions for more intense ARs
over the western U.S., consistent with the result presented by Guan et al. [16]. We also see
a stronger upper-level jet influence on low-level, and therefore AR, moisture transport [48].
From Figure 5c,d, we find a greater eastward air movement in the region that is highly
associated with landfalling ARs on the U.S. west coast, with a stronger wind gradient in
the negative AO over the eastern Pacific.

Together with the winds at different vertical levels, we also examined the vertically
integrated zonal water vapor flux during the positive and negative phases of AO, shown in
Figure 5e,f. Enhanced zonal water vapor flux is shown in the negative AO months relative
to the positive AO months. Figure 5 suggests that the synoptic conditions indispensable
for AR formation, such as a strong low-level jet with high moisture and strong vapor
flux, are pronounced during the negative phase of AO over the northwestern U.S. in NH
wet seasons.

3.2. Different AR Characteristics during the Different Phases of AO
AR Intensity, Duration, and Frequency

To examine how the different phases of AO are related to AR characteristics such as
intensity, duration, and frequency at local scales, we analyzed different regions over the
west coast of the U.S., shown in Figure 6a. In this section, we employed the AR data catalog
mentioned in Section 2.1.1 to observe any differences between positive and negative AO
months compared to all months in the period of 40 years (1980–2019). The six sub-regions,
such as (A) Washington/Oregon coast, (B) northern California coast, (C) northern California
inland, (D) California mountains, (E) southern California coast, and (F) southern California
inland, were chosen from across the western U.S. to observe any differences between the
regions (see Figure 6a).

The IVT was averaged for all AR events (when the IVT was greater than 250 kg m−1 s−1)
during all the positive AO months, and we found the percentage difference from all AR
events in that same period, shown in Figure 6b. A similar method was applied to data for
all negative AO months in Figure 6c. Notably, the IVT is lower during the positive phase of
AO and higher during the negative phase months for almost all regions. Here we define
AR intensity as the magnitude of IVT values. Taking the averages for all 30 sites (5 sites
for each 6 subregion) during wet months (October through April) over 40 years yields a
difference of 2.6% less intense (5.3% more intense) than the climatological mean (1980–2019)
for the positive (negative) AO months, significant at the 85% (99%) confidence level.

Figure 6d,e shows the duration difference of each new AR event during the different
phases of AO. Like the AR intensity plots (Figure 6b,c), there is a characteristic feature:
shorter durations compared to all months during the positive AO phase and longer dura-
tions during the negative AO phase in most locations. The overall mean difference for each
phase is 16.0% shorter (21.1% longer) than the climatological mean for the positive phase
(negative phase) at the 99% confidence level.
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Figure 6. (Top) Map of study regions created using Google Maps© (a). (Bottom) Percentage difference
histograms of (b,c) AR intensity and (d,e) AR duration during positive AO months and negative AO
months from October through April during 1980–2019. The intensity is determined by the magnitude
of IVT values. The different colors in the histogram indicate the values at different sites from the
northeast to the southwest (from left to right) for each subregion (A–F). The negative values represent
a percentage lower than the climatological mean (1980–2019), and the positive values represent a
percentage higher than the climatological mean.

The AR frequency difference in the two phases of AO was also analyzed. The AR
frequency tends to be larger in the negative AO phase than the climatological mean, but
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regional differences are relatively large (not shown). For example, over the region A–D,
AR frequency in the positive AO phase (negative AO phase) is about 2.6% less frequent
(50.4% more frequent) than the climatological mean, and this is statistically insignificant
(significant at 95% confidence level). However, over region E–F (Southern California), there
is no statistically significant difference between either the negative AO phase or the positive
AO phase (not shown). Given the three characteristics for the severity of ARs shown
in Figure 6, negative AO months tend to favor AR formation, intensity, and longevity
compared to positive AO months over most of California’s coastal and mountainous
regions. However, the relationship between AR frequency and the AO phases is relatively
insignificant, especially in southern California.

3.3. SWE Characteristics over Northern California during the Different Phases of AO
3.3.1. SWE and ROS Events in Relation to AO

Regional snowpacks are important water resources in California. It is shown that
the snowpack is largely modulated by large-scale variability and environmental factors
such as temperature [13]. Here, we examined how AO could modulate regional snowpack
through SWE measurements. Figure 7 displays the time series between SWE, AO index,
and the temperature at 850 hPa. For the SWE time series shown in both plots of Figure 7,
we calculated the monthly anomaly to extract the anomalous features in the given year
compared to the climatological mean. In this period from 1985 to 2020 we seea few instances
of reduced SWE and both higher temperatures and a higher AO index.
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Figure 7. Time series of snow water equivalent (SWE) anomaly in the northern California mountain
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For example, during 2015–2016, a very low SWE anomaly was observed when temper-
atures warmer than the climatological mean were observed. Sea surface temperature (SST)
was also reported to be very high, indicating a strong El Niño and the possible influence
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of the El Niño event on AR precipitation during this period [49]. Out of all the months
from 1985 to 2020, the positive AO months had 71.4% reduced SWE anomalies compared
to all months with 63.7% reduced SWE anomalies and negative AO months with 33.3%
reduced SWE anomalies in the northern California mountain regions (see Figure 7). This
suggested there also could be an association between ROS events, air temperature, and AO
phases because ROS events can occur when the SWE decreases while the total precipitation
increases in warmer temperature [13].

The preliminary analysis, however, showed that ROS events are not always linked to
the specific phase of AO. Furthermore, the case studies using March 2016 and January 2017
data showed that there is almost the same or insignificant impact of AR and non-AR on
ROS (~50%) (not shown), and a similar association was also reported by Guan et al. [13].
Thus, in the following section, we focus on further investigating the association between
SWE and AO and their linkages with the recently shifted climate patterns.

3.3.2. Change in SWE in Association with Temperature, SLP, and AO

As mentioned in Section 3.3.1, there was no clear correlation between AO and temper-
ature over a longer period, although there are some strong associations visible in Figure 7
for some periods. Thus, in this section, we aim to look further at the SWE anomaly/AO and
SWE anomaly/850 hPa temperature anomaly patterns. Figure 8 shows the correlation plots
of the SWE anomaly with the AO and 850 hPa temperature anomaly during three different
time periods (1988–1992, 2002–2006, and 2012–2016). They are negatively correlated for all
periods (1985–2020) over northern California (not shown), although the significance varies,
and the coefficient gets higher in the recent period (Figure 8c).

For example, in the 2012–2016 period, when the warming and drought conditions
were persistent, the maximum temperature anomaly was ~5 K greater, and the maximum
SWE loss was 25 inches greater than the climatological mean (1985–2020), as shown in
Figure 7b. Although the overall relationship between the SWE anomaly and AO index
varies by year, a positive AO index tends to be associated with a lower SWE.

This negative correlation accelerated more in the 2010s than in the 1990s as the tem-
perature and SWE anomalies became more positive (not shown). Although the overall
significance is lower than that for the few time periods, this shows that recent conditions
such as extreme heat, surface warming, and severe drought may enhance the SWE loss
in northern California. Indeed, the lower layer mean temperature, represented by the
thickness between 500 hPa and 1000 hPa, shows a positive warm anomaly trend that gets
more intense in recent years over California and the NH eastern Pacific, as seen in Figure 9.
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the positive AO phase more frequent in recent years (e.g., years after 2008). Considering 
that SWE tends to be reduced in the positive AO phase and under warmer lower atmos-
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Figure 9. The box-and-whisker plots of the atmospheric layer thickness (500–1000 hPa) anomaly
averaged over the eastern Pacific and western U.S. (160–100◦ W and 30–50◦ N) from 1980 to 2020
obtained from MERRA2 data. The error bar represents the data within a 95% confidence interval per
year. The boxplot’s interior line indicates the median for given year; the bottom and top of the boxes
are the 25th and 75th percentiles; the upper extreme and the lower extreme whiskers represent the
maximum and minimum data. The black dot outside the box indicates the outlier.

The atmospheric variables such as SLP, lower layer mean temperature (i.e., lowermost
layer between 500–1000 hPa), and low-level tropospheric stability (LTS; defined by the dif-
ference in potential temperature from 700 hPa to 1000 hPa) present interesting relationship,
as shown in Figure 10. Clearly shown are: (1) AO index and thickness anomalies tend to be
more positive in the recent years with extremes, (2) LTS anomaly increases in recent years
(starting from 1998) in a wide range of SLP anomalies (see Figure 10a,b). While the trend of
AO is not clearly observed (not shown), AO is positively correlated with the SLP anomaly
[R = 0.41, p < 0.01] and the LTS anomaly [R = 0.24, p < 0.01] (Figure 10a) with the positive
AO phase more frequent in recent years (e.g., years after 2008). Considering that SWE tends
to be reduced in the positive AO phase and under warmer lower atmospheric temperatures
(at 850 hPa; see Figure 8), SWE may decrease over northern California if this warming
condition persists. For example, the NH winter of 2019–2020 was an extraordinarily warm
year on record in Europe, Asia, and North America with a positive AO phase [50,51], and
our analysis indicates that the SWE clearly decreased during that period (see Figure 7).
This analysis suggests that AO along with SLP and low-level temperature may be useful
metrics to help forecast and predict SWE in northern California.
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vapor transport (IVT), longer duration (~21.1%) of ARs compared to the climatological 
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Figure 10. (a) (from left to right) Scatter plots of the AO index with the thickness (geopotential
height from 500 to 1000 hPa) anomaly, low-level tropospheric stability (LTS; potential temperature
difference between 700 hPa and 1000 hPa) anomaly, and SLP anomaly. Scatter plot of the SLP anomaly
with the LTS anomaly. The SLP anomaly is normalized by subtracting the climatological mean from
each value and dividing by the standard deviation. The colors of circle markers in (a) represent the
monthly anomalies of the variables for each year (1980–2020) in increasing time order (from blue
to red). (b) Time series of the annual mean of AO, LTS anomaly, and SLP anomaly over the eastern
Pacific and western U.S. (160–100◦ W and 30–50◦ N) from 1980 to 2020. The error bars represent the
95% confidence intervals around the values computed by 5000 bootstrap iterations. The R-value in
(a) represents the Pearson correlation coefficient at a 99% confidence level. The magenta arrow in (a)
represents the shifted pattern over time.

4. Discussion and Conclusions

We investigated how the synoptic and large-scale conditions are shaped by the Arctic
Oscillation (AO) and how they are associated with different characteristics of atmospheric
rivers (ARs) and local snowpack, particularly focusing on the western U.S. We utilized
multi-platform dataset including reanalysis, satellite, and local observation from 1980 to
2020, depending on the data availability.

We first demonstrated that the synoptic conditions of the negative phase of AO are
associated with the upper-level wavelike patterns in the northern Pacific region with a
strong low-level jet, transporting more moisture to the western U.S.. We also showed
quantitatively that the negative AO months had more intense (~5.3%) integrated water
vapor transport (IVT), longer duration (~21.1%) of ARs compared to the climatological
mean (1980–2019) over the western U.S. AR frequency was also higher (~50.4%) in the
negative AO phase than the climatological mean, but there was no statistically significant
difference between either negative AO or positive AO phase, particularly in southern
California.

Lastly, we also showed the linkages between the low snow water equivalent (SWE) and
high low-level temperature during the positive AO phase with little connection between
the AO and rain-on-snow (ROS) events. It was also shown that positive AO is related to
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warmer temperature and reduced SWE, and these relationships were more statistically
significant and stronger in recent years. These findings are well aligned and consistent with
previous research [16,45,46], while our study further reports more recent trends focusing on
the western U.S. during wet months for extended periods using long-term state-of-the-art
satellite and local measurements.

While this study can offer an improved understanding of the connection between large-
scale climate variability, AR characteristics, local precipitation, and snowpack, there is still
a limitation. (1) Although we illustrated how IVT and precipitation could be related to the
AO phase in selected periods, no clear relationship was obtained among ROS, AR, and AO
during the entire period. This may be associated with the number of data sampling and the
uncertainty of precipitation product. (2) We also did not consider other climate variabilities,
such as the Pacific North America Oscillation (PNA), Madden-Julian Oscillation (MJO),
and El Nino Southern Oscillation (ENSO), to associate AO to ARs and SWE characteristics
solely. However, the interplay among climate variabilities can be possible. Indeed, a recent
study showed that the spring AO and the subsequent winter ENSO are highly modulated
by the phase of the preceding November AO [52]. (3) Different geographical regions and
their association with AR and AO are other research areas to investigate for global and
regional implications. (4) Furthermore, although there is a negative SWE–temperature–AO
association over northern California at a monthly time scale, how these relationships vary
at different time scales (daily or weekly and synoptic time scales) in conjunction with other
dynamical and thermodynamical processes was not pursued in this study.

This study emphasizes that the synoptic conditions shaped by the different phases of
climate variability, such as AO, have a different impact on the characteristics of extreme
precipitation events such as ARs, and snowpack over the local region. The projection of
the greater reduction in SWE under the warmer low-level atmospheric temperature and
persistent high sea level pressure (SLP) and low-level tropospheric stability (LTS) in recent
years may lead to more wildfire-prone conditions over the western U.S. For example, the
year 2020 was the strongest positive AO year since 2000 [50] as well as the second warmest
year [51] and was also reported to have record-breaking wildfire events [53]. Improved
understanding of the factors controlling local precipitation and snowpack in the different
phases of climate variability is crucial for securing water resources, preventing wildfire
events, and ultimately protecting the whole ecosystem under a warming climate.
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